Faculty of Engineering MM2EMD

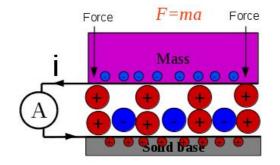
Worksheet 5 – MM2EMD Analog electronics and operation amplifiers.

Q1. Draw and explain how an accelerometer works.

Q2. Accelerometers are always used with an op-amp circuit – why is this?

Q3. In the notes we derive an equation relating the acceleration an accelerometer experiences to the output of an integrating op-amp circuit. Device this equation your self. I suggest you start by reading the notes, then make notes on the derivation. Then see if you can write out the derivation from memory. In an exam I would not ask you to produce the whole derivation but I may ask you about some of the key assumptions made in the derivation.

Q4. Draw an amplifier circuit that could be used with a wheatstone bridge. Write down the equation relating the potential developed across the wheatstone bridge to the output of the amplifier circuit.

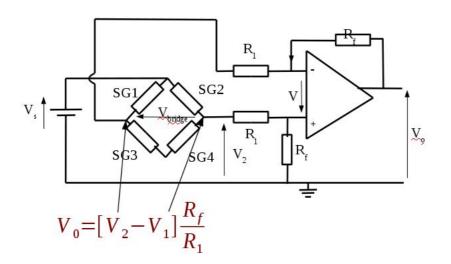

Q5. A wheatstone bridge develops a potential of 0.01V, an amplifier circuit attached to the bridge has $R_1=R_2=10$ kOhm and $R_f=R_g=100$ kOhm. What will the output voltage of the amplifier circuit be?

Q6. Derive the equation you used in question 5 – use your notes to help you. Try to understand each step in the derivation.

Faculty of Engineering MM2EMD

Answers

Q1.



The mass squashes the quartz crystal which produces current.

Q2. Accelerometers develop a very small current, also the output is not proportional to the acceleration. (See notes for more details.)

Q3. See notes.

Q4.

Q5.

$$V_{0} = [V_{2} - V_{1}] \frac{R_{f}}{R_{1}}$$
$$V_{0} = [0.01] \frac{100}{10}$$

V₀=0.1 V

Q6. See notes.

