Continuum of trapping levels

Electron density of each trap:

$$\frac{\partial n}{\partial t} = r_1 - r_2 + r_3 - r_4$$

Total electron recombination

$$R_{n} = \sum_{0}^{n_{band}} \left(r_{1}^{e} - r_{2}^{e} \right)$$

Total hole recombination

$$R_{n} = \sum_{0}^{n_{band}} \left(r_{4}^{e} - r_{3}^{e} \right)$$

Roderick MacKenzie

Modeling carrier transport across the device.

	Inputs	
	Poisson's equation	Outputs
	$\nabla \epsilon_o \epsilon_r \cdot \nabla \phi = q \cdot (n-p)$	•Current density
Inputs	Current driving terms	•Recombination
•Applied Voltage	$J_n = q \mu_e n \nabla E_c + q D_n \nabla n$ $J_n = q \mu_e n \nabla F_c - q D_n \nabla n$	
•Light intensity	$\int_{p} -q \mu_{h} p \nabla L_{v} - q D_{p} \nabla p$ Current continuity equations Electron continuity	•Average charge density
y	$ \nabla \cdot \boldsymbol{J}_{n} = q \cdot \left(\sum_{0}^{n_{band}} \left(\boldsymbol{r}_{1}^{e} - \boldsymbol{r}_{2}^{e} \right) + \sum_{0}^{p_{band}} \left(\boldsymbol{r}_{4}^{h} - \boldsymbol{r}_{3}^{h} \right) + \frac{\partial n_{free}}{\partial t} \right) $ Hole continuity $ \nabla \cdot \boldsymbol{J}_{p} = -q \cdot \left(\sum_{0}^{n_{band}} \left(\boldsymbol{r}_{4}^{e} - \boldsymbol{r}_{3}^{e} \right) + \sum_{0}^{p_{band}} \left(\boldsymbol{r}_{1}^{h} - \boldsymbol{r}_{2}^{h} \right) + \frac{\partial p_{free}}{\partial t} \right) $	Electron Energy (eV)

Roderick MacKenzie

0D energy model + 1D device model

We have a device model, but can it reproduce experimental results?

Roderick MacKenzie

Reproducing steady state JV/CE curves

Roderick MacKenzie

Reproducing transient photo current

•We can also reproduce the TPC curves at two points on the JV in both the light and in the dark.

Roderick MacKenzie

11th August 2011, Jyväskylä Summer School Finland

Are SRH and Langevin recombination comparable?

The number of free carriers is much smaller than the number of trapped carriers therefore $n_{total} \approx n_{trap}$

$$R = \frac{q}{\epsilon_0 \epsilon_r} \left(\mu_e^0 n_{free} p_{trap} + \mu_h^0 p_{free} n_{trap} \right)$$

Therefore Langevin recombination with tails is equivalent to SRH recombination with an instantaneous carrier trapping time.

Roderick MacKenzie

Overview

- 1) Molecular level simulation of thin films
- 2) Electrical characterization of OPVs
- 3) Diffusion limited recombination in OPVs

4) The open circuit voltage

5) Conclusions